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ABSTRACT

Fluorescein angiogram (FA) is a medical procedure that helps the ophthalmologists to monitor the

status of the retinal blood vessels and to diagnose proper treatment. This research is motivated by

the necessity of blood vessel segmentation of the retina. Retinal vessel segmentation has been a

major challenge and has long drawn the attention of researchers for decades due to the presence

of complex blood vessels with varying size, shape, angles and branching pattern of vessels, and

non-uniform illumination and huge anatomical variability between subjects. In this thesis, we

introduce a new computational tool that combines deep learning based machine learning algorithm

and a signal processing based video magnification method to support physicians in analyzing and

diagnosing retinal angiogram videos for the first time in the literature.

The proposed approach has a pipeline-based architecture containing three phases - image regis-

tration for large motion removal from video angiogram, retinal vessel segmentation and video

magnification based on the segmented vessels. In image registration phase, we align distorted

frames in the FA video using rigid registration approaches. In the next phase, we use baseline cap-

sule based neural networks for retinal vessel segmentation in comparison with the state-of-the-art

methods. We move away from traditional convolutional network approaches to capsule networks

in this work. This is because, despite being widely used in different computer vision applications,

convolutional neural networks suffer from learning ability to understand the object-part relation-

ships, have high computational times due to additive nature of neurons and, loose information in

the pooling layer. Although having these drawbacks, we use deep learning methods like U-Net and

Tiramisu to measure the performance and accuracy of SegCaps. Lastly, we apply Eulerian video

magnification to magnify the subtle changes in the retinal video. In this phase, magnification is

applied to segmented videos to visualize the flow of blood in the retinal vessels.
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CHAPTER 1: INTRODUCTION

Fluorescein angiogram (FA) is a medical procedure that helps the ophthalmologists to diagnose

proper treatment or monitor the status of the retinal blood vessels [1]. In this procedure, a fluo-

rescein dye is injected into the patient’s bloodstream to highlight the blood vessels in the retina.

A dedicated fundus camera is used to capture the images of the blood vessels to examine the reti-

nal vasculature structure in detecting any abnormalities in the retinal pathology like glaucoma,

age-related macular degeneration (AMD) or diabetic retinopathy.

Figure 1.1: FA image of a subject having (a) Age-related macular degeneration [2] and (b) Prolif-
erative diabetic retinopathy [4].

AMD is a disorder that affects the macula in the center of the retina for the people over the age of

55 [2]. The macula is an essential part of the eye, which is responsible for reading and recognizing

faces. Figure 1.1 (a) shows the FA where the black area marked by the red circle corresponds to

the hemorrhage.
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Diabetic patients can have an eye disease called diabetic retinopathy [3]. This occurs due to high

blood sugar levels causing damage like swelling, leaking or, closing of the retinal blood vessels.

These changes affect the vision. Figure 1.1 (b) shows affected regions marked by red circles of a

typical case of proliferative diabetic retinopathy.

Figure 1.2: Fundus camera (SPECTRALIS OCT) (Courtesy of Heidelberg Engineering Inc.).

A fundus camera as shown in Figure 1.2, can be considered as a low power microscope for the

purpose of capturing retina fundus imaging, where the retina is illuminated for imaging by means

of the attached camera. Specifically, the fundus camera is used to take an image for the interior

parts of the human eye including macula, optic disk, retina and posterior pole [1].

2
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Figure 1.3: The region within the red square box highlighting the presence of motion and noise in

FA video frames.

3
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Our research is motivated by the necessity of retinal blood vessel segmentation, which has a re-

markable place in the medical image segmentation literature. The blood vessel segmentation has

long drawn the attention of researchers and doctors due to the presence of complex features in the

retinal vessel structure with respect to the size, shape, angles and branching patterns of vessels,

non-uniform illumination and anatomical variability between the subjects [13].

Some of the critical challenges in FA video analysis include motion, noise, complex shape nature

of vessels, lack of validated ground truths to train machine learning algorithm and difficulty in

blood flow analysis. To our best of knowledge, there is no quantitative tool for analyzing these

images. One of the biggest challenges in FA analysis is the inevitable motion between frames

of FA video. Because the operator is taking the videos by hand, and there is a presence of huge

motion in the videos when doctors analyze the same. Figure 1.3 displays the frames of a FA video

of a normal subject. The red box in the figure indicates that the blood vessels are not aligned in the

frames due to the motion. This causes the frames to be either translated, rotated or both.

Another challenge is the noise. Most of the areas in the FA video frames are very noisy as shown

in Figure 1.3. To develop an image analysis tool, noise should be carefully considered, especially

when identifying the vessel structures for quantification purpose. Noise is a widely known problem

in image processing field for many decades.

The tree-like appearances of blood vessels is a major hurdle too. Segmenting such structures is

relatively more difficult than closed objects (i.e., Jordan Surface) with the same resolution settings.

Figure 1.4 exhibits that similar tree-like appearances can be found in bronchial airways [5] as well.

Physicians can analyze the blood vessels quantitatively if the length, shape, and volume infor-

mation of the vessels are available through image segmentation. However, extracting the image

segmentation mask, which we call ground truth for training machine learning algorithms, is tedious

and involves a lot of effort. Its reproducibility is very low because when an operator repeats the

4
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experiment to make some annotations, there will be inter-operator and intra-operator variations. In

other words, many segmentation problems require precisely labeled output. A small segmentation

error can lead to major problems in diagnosing the diseases and other clinical evaluations. There-

fore, the automated segmentation method of retinal vessels still remains a challenging task and has

been a major research issue.

Figure 1.4: Tree-like appearances present in both (a) Bronchial airways [5] and (b) Retinal blood
vessels.

Since motion and noise are two important challenges in images, blood flow analysis is not largely

adopted in clinics. One of the hypotheses of incorporating computational tools is to design a

computational framework for accurate blood flow analysis. This may follow some disease pattern

identification too. At this stage, we do not test the clinical utility of such a tool but propose

to develop a proof of concept for the first time in the literature. In other words, we make an

attempt to prepare something in case doctors are interested in finding the dynamics of the blood

flow. Currently, optical coherence tomography angiography (OCTA) images provide dynamic

5
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blood flow information. However, OCTA is not widely used for vessel segmentation analysis.

Figure 1.5: Schematic diagram of our proposed approach.

In this research work, we introduce a new tool which has three modules, namely, image registra-

tion, retinal blood vessel segmentation, and segmentation guided video magnification as shown in

Figure 1.5. The main contribution of the first module is serial rigid registration with binary images

instead of grayscale images. The binary images are created through rough thresholding. During

registration, a middle frame is chosen as a reference in order to register all the remaining frames to

that one. The objective of this module is to get rid of the motion between the frames and some of

the noise.

The next module involves the segmentation process. To the best of our knowledge, there is no deep

learning based segmentation in FA video study and our work is the first ever deep learning based

segmentation in FA videos. We use a capsule-based deep learning approach [6] which is a very

recent work in the deep learning area. We also perform an extensive comparison with the baseline

networks like U-Net [10] and Tiramisu [12].

In the final module, we explore Eulerian video magnification [8] on retinal blood vessels. We use a

constrained based magnification approach. Instead of using the entire frame, we use segmentation

as a prior i.e., we only magnify the blood vessels.

The organization of this thesis is as follows. Section 2 briefly reviews the existing literature on

6
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the applications of different segmentation methods including deep learning to various medical

images and the fundus images. Section 3 describes the details of deep learning based segmentation

methods in biomedical images. Then, Section 4 describes the proposed approach. Section 5 reports

the results of the computational experimentation. Finally, Section 6 summarizes our findings and

some fruitful future research directions.

7
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CHAPTER 2: LITERATURE REVIEW

Over the last two decades, a considerable group of researchers has developed and implemented

different vessel segmentation methodologies. These techniques can be broadly classified into two

categories: supervised [15, 16, 17, 18, 19] and unsupervised [20, 21, 22, 23]. More recent super-

vised segmentation methods are based on mostly deep neural networks [15, 16, 17, 18, 19]. On the

other hand, matched filtering [20], multi-scale approach [21], vessel tracing [22], and thresholding-

based approaches [23] are some of the important approaches in the unsupervised segmentation cat-

egory, pertaining to pre-deep learning era. The supervised segmentation methods rely on a labeled

set of training images, whereas, the unsupervised segmentation methods are based on without hav-

ing any prior knowledge and labeled responses. Usually, the unsupervised methods are faster and

lesser time complexity than the supervised methods. However, the supervised methods perform

better than the unsupervised methods. Recent research show detailed surveys of the blood vessel

segmentation methodologies in retinal fundus images [1, 13, 24].

Currently, convolutional neural networks (CNNs) in deep learning have emerged as the most pow-

erful learning algorithms compared to other machine learning algorithms and perform very well in

a variety of fields. However, these deep learning networks suffer from some limitations such as lim-

ited learning ability to understand the object-part relationships and requiring higher computational

times due to the scalar and additive nature of neurons in CNNs [6]. Additionally, the CNN is losing

valuable information as well despite it performs very well by using its max-pooling component.

Recently, as an alternative method to the CNNs, a new version of deep learning networks, called

capsule networks (CapsNet) [7] have attracted growing interest of researchers and have emerged as

competitive deep learning tools. These CapsNet have shown significant remarkable performance

compared to CNNs in many computer science applications including digit recognition and image

classification [7]. Recently, the CapsNet has been successfully implemented in various medical

8
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image applications [25, 26, 27], and other applications [28].

Table 2.1: Summary of recently used retinal vessel segmentation techniques [1].

Year Method Performance Measure Dataset
2015 Modified Gaussian matched filter

+ Entropy thresholding [29]
Acc, Sp, Se DRIVE [40]

2015 Snakes contours [30] Acc, Sp, Se DRIVE
2015 Level set without using local re-

gion area [31]
Acc, Sp, Se DRIVE

2015 Fuzzy Logic [32] Acc DRIVE
2016 Filter Kernel: Laplacian of Gaus-

sian [33]
Acc, Sp, Se DRIVE, STARE [41]

2016 Local adaptive thresholding
based on multi-scale tensor [34]

Acc, Sp, Se Erlangen Dataset [42]

2016 Ensemble of 12 convolutional
ANNs [35]

Acc DRIVE

2016 Deep Convolutional ANNs [18] Area under Recall-
Precision Curve

DRIVE, STARE

2016 Deep ANNs [16] ROC, Acc DRIVE, STARE
2017 Global thresholding based on

morphological operations [36]
Acc, Execution time DRIVE, STARE

ROC: Receiver Operating Characteristics; Acc: Accuracy; Sp: Specificity;
Se: Sensitivity; ANN: Artificial Neural Network.

There exists many segmentation tools available in the medical image processing and retinal vessel

structure segmentation literature [1, 16, 35, 29, 30]. Each retinal vessel segmentation tool con-

sists of three common phases such as pre-processing, processing and post-processing. Apart from

the above taxonomy of supervised and unsupervised methods, the vessel structure segmentation

techniques used in the processing phase can be classified into two major categories: rule-based

and machine learning. Rule-based techniques include kernel-based [29], parametric deformable

modeling [30, 31], mathematical morphology-based [36], and multi-scale adaptive local thresh-

olding [34], whereas, machine learning tools include ANNs and CNNs [16, 18, 35]. A summary

of comparison of recently used different retinal vessel segmentation techniques are given in Table

9
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2.1.

The following four performance measures, namely, sensitivity, specificity, accuracy, and precision

are popular in the medical image processing literature including retinal vessel segmentation [1, 29,

34]. These metrics are defined as follows.

Sensitivity =
TP

TP + FN
(2.1)

Specificity =
TN

TN + TP
(2.2)

Accuracy =
TP + TN

TP + FN + FP + TN
(2.3)

Precision =
TP

TP + FP
, (2.4)

where, True Positive (TP) is the number of pixels correctly segmented as blood vessels, True

Negative (TN) is the number of pixels correctly detected as background, False Positive (FP) is the

number of pixels falsely segmented as blood vessels and False Negative (FN) is the number of

pixels falsely detected as background.

Moreover, many researchers use the performance metric as receiver operating characteristics (ROC)

curve [16], especially, for the techniques that rely on particular parameters during the segmentation

process.

Singh et al. [29] present a segmentation technique based on Gaussian matched filter with a Gaus-

sian kernel for the retinal vascular structure and implement it by means of DRIVE dataset. Through

the generated segmentation results, they show that their technique produces the performance met-

10
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rics of 0.9387, and 0.9647 and 0.6721 for average accuracy, average specificity, and average sen-

sitivity, respectively.

Jin et al. [30] propose a snake-based segmentation technique in the category of parametric de-

formable modeling with the objective of fast convergence of the snakes to the correct vessel edges

in some situations like the presence of high noise in the video, empty blood vessels, and low

contrast levels.

Gongt et al. [31] propose a novel level set technique in the category of geometry deformable

models for retinal image vessel segmentation. The proposed technique is based on local cluster

value through bias correction. This method provides more local intensity information at the image

pixel level and does not require initialization of level set function. They test their method on

DRIVE dataset and report an accuracy of 0.9360, sensitivity of 0.7078 and specificity of 0.9699.

Sharma and Wasson [32] develop a fuzzy-based retinal vessel segmentation method. They use the

fuzzy-logic processing considering the difference of low-pass and high-pass filters in the retinal

image. The fuzzy logic comprises different sets of fuzzy rules where each fuzzy rule is con-

structed based on different thresholding values to select and discard pixel values, leading to vessel

extraction. Their methodology yields an average accuracy of 95% on DRIVE dataset.

Kumar et al. [33] propose an algorithm based on the inherent zero-crossing property of Laplacian

of Gaussian (LoG) filter for the detection of retinal vascular structure for the fundus images. In

their algorithm, they apply two-dimensional matched filters with LoG kernel functions. Their pro-

posed methodology achieves the performance measures of 0.9626, 0.7006 and 0.9871 for average

accuracy, sensitivity, and specificity respectively.

Christodoulidis et al. [34] propose a scheme based on Multi Scale Tensor Voting (MSTV) for the

segmentation of small thin vessels. The proposed technique consists of four major phases, namely,

11
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pre-processing, multiscale vessel enhancement, adaptive thresholding and MSTV processing, and

post-processing. The proposed methodology is tested Erlangen dataset [42] and produces aver-

age measures of 94.79%, and 85.06% and 95.82% for the accuracy, sensitivity, and specificity

respectively.

Maji et al. [35] propose a deep neural network technique by means of an ensemble of twelve

CNNSs to discriminate between vessel pixels from non-vessel ones. Each CNN contains three

convolutional layers and each one is trained individually based on a set of 60,000 randomly 31 x

31 x 31-sized patches taken from 20 raw color retinal images of DRIVE dataset. Their technique

shows superior performance in terms of learning vessel presentation from data than one neural

network because it is more powerful and accurate due to the ensemble of many CNNS.

Maninis et al. [18] implement a fast and accurate automated supervised deep CNN algorithm

for the segmentation of retinal and optic disc structures. The proposed algorithm is validated on

DRIVE and STARE datasets, resulting in an average accuracy of 0.822 for DRIVE dataset and

0.831 for STARE dataset.

Liskowski et al. [16] also present a CNN-based algorithm for segmenting retinal vessels. They

show through the results of their algorithm an accuracy of 0.9533 and the area under supremum

curve of 0.974.

Jiang et al. [36] apply a mathematical morphology-based technique using global thresholding

operations to segment the retinal vascular structure. The technique is tested on DRIVE and STARE

datasets and attains an average accuracy of 95.88% for single dataset test and 95.27% for the cross-

validation dataset test.

The literature survey reveals that there have been several studies on the applications of various

retinal vessels segmentation methods including deep neural networks and CNNs. However, the

12
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segmentation technique based on the CapsNet [7] was not reported in the vessels segmentation

literature. Therefore, this research is motivated to verify the suitability of the potential applications

of the CapsNet in retinal blood vessels segmentation and to compare its performance with some

state-of-the-art segmentation methods.

13
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CHAPTER 3: DEEP LEARNING FOR SEGMENTATION

There have been numerous studies applying deep learning, demonstrating its superiority over other

image segmentation methods in various fields, including in biomedical imaging. SegNet [9], U-

Net [10] and Fully Convolutional Network (FCN) [11] are some of the widely used deep learning

algorithms for segmentation. Recently, LaLonde and Bagci propose a new method [6] considering

a new semantic segmentation based on capsule networks.

3.1 U-Net

The U-Net model [10, 38] is the most widely used image segmentation algorithm. It is based on

the FCN. It is modified to support better segmentation in medical imaging. It differs from the

FCN-8 architecture in the following ways. Firstly, the U-Net is symmetric. Secondly, instead of a

summation operator, the skip connections between the down-sampling and up-sampling path use a

concatenation operator. The skip connections provide local information to the global information

during up-sampling. Since the network is symmetric, it consists of a large number of feature maps

in the up-sampling path. This helps in transferring information. On the other hand, the basic FCN

architecture contains ”number of classes” as feature maps in the up-sampling path.

The model is named due to its symmetric shape as illustrated in Figure 3.1. It contains three parts

- contracting or down-sampling path, bottleneck and expanding or up-sampling path.

The down-sampling path consists of four blocks. Each block contains 3× 3 convolution layer and

activation function (with batch normalization), another 3 convolution layer and activation function

(with batch normalization), and finally, a 2 × 2 max pooling layer. The number of feature maps

increases twice in size at each pooling layer. It starts with 64 feature maps in the first block, then
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another 128 for the second one, and so on. This down-sampling path captures the context of the

input image. This helps in the segmentation process. The skip connections are used to transfer the

coarse contextual information to the up-sampling path.

Figure 3.1: Schematic diagram of a typical U-Net architecture [10].

The next part of the U-Net architecture is the bottleneck. It connects the down-sampling and the

up-sampling path. It consists of two convolutional layers with batch normalization and dropout.

The final part of this model is the up-sampling path. Like the down-sampling path, it consists

of four blocks. However, these blocks are different from the down-sampling path. Each block

contains a deconvolutional layer with stride 2, concatenation of the skip connections with the

corresponding cropped feature map from the down-sampling path and, two 3 × 3 convolutional

layers and activation functions with batch normalization. The up-sampling path enables precise

localization combined with contextual information from the down-sampling path.
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The model obtains the local information from the down-sampling path and combines the contextual

information in the up-sampling path. This produces a general information which helps in the

prediction of a good segmentation map. Moreover, being devoid of dense layers, the model can

take images of different sizes as input.

3.2 Tiramisu

Although the U-Net is good in segmentation, it uses a lot of parameters compared to Tiramisu

model [12]. The name is derived from the tiramisu dessert because of its many layers. In fact, this

model contains 103 layers. It is a variant of U-Net architecture with down-sampling, bottleneck,

and up-sampling paths and skip connections. Instead of using the convolution and max-pooling

layers, it uses dense blocks from the DenseNet architecture.

Table 3.1: Building blocks of Tiramisu model. From left to right: layer used in the model, Transi-
tion Down (TD) and Transition Up (TU) [12].

Table 3.1 provides details about the dense block layer, transition down and transition up of the

network. The dense block layer consists of batch normalization, followed by a rectified linear unit

(ReLU), a 3 × 3 convolution and a dropout with a probability of 0.2. The growth rate (k) of the

layer is fixed at 16. The transition down consists of batch normalization, followed by a rectified

linear unit (ReLU), a 1 × 1 convolution, a dropout with a probability of 0.2 and a max pooling of

size 2 × 2. The transition up consists of a 3 × 3 transposed convolution with a stride of 2. This
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helps in compensation of the pooling operation.

Table 3.2: Architecture details of Tiramisu model containing 103 layers [12].

All the layers in the Tiramisu model are summarized in Table 3.2. The network contains 103

convolutional layers. The first layer is the input layer. It is followed by 38 layers in the down-

sampling path, 15 layers in the bottleneck and another 38 layers in the up-sampling path. The

model uses 5 Transition Down (TD), each of which has one extra convolution, and another 5

Transition Up (TU), each of which has a transposed convolution. The final layer in the model

contains a 1×1 convolution, followed by a softmax non-linearity activation function. This provides

the per class distribution at each pixel. Figure 3.2 illustrates the schematic diagram of the Tiramisu

architecture.

Although this network is very deep, it has very few parameters compared to other convolutional

neural networks. It has been found to be effective in challenging datasets, without requiring any

extra post-processing or pre-training.
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Figure 3.2: Schematic diagram of Tiramisu architecture (a) Fully Convolutional DenseNet with

103 layers (b) Content of a dense block [12].

3.3 Capsule networks

The most important part of a CNN is the convolution operation. The purpose of a convolution

along with its weights is to identify key features. During training of the CNN, it tunes the weights

of the convolution operations to identify certain features in the image. If the model is trained for

face detection, the eyes or ears might trigger some convolutions in the network. If all the major

parts of the face (like eyes, ears, nose, and mouth) are found together, then the CNN will be able
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to predict a face.

Figure 3.3: A typical scenario where CNNs fail to understand the object-part relationships in face
images [39].

However, the CNNs cannot perform such a task. Figure 3.3 depicts an example where CNNs fail

[39]. Although the convolution operation of the CNNs activate all the important features of the

face, it concludes both the images as a face.

High-level features are combined with low-level features before being passed through an activation

function. The part-whole relation or the relationship between the features are not provided in this

information flow. Thus, we can conclude that the main drawback of CNNs is that they fail to

recognize the relative relationships among features. This is due to the fact that CNNs rely on

scalar values during convolution operation.

For correct image recognition, it is essential to preserve hierarchical pose relationships between

features. For a better methodology to model these relationships, capsules [7] introduce a new
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building block that can be used in deep learning. This new feature representation can be obtained

by using vectors instead of scalars.

Table 3.3: Comparison of capsules with traditional neurons [39].

To sum up the basic operations of a convolution in a typical CNN include scalar weighting of input

scalars, Sum of weighted input scalars and scalar-to-scalar non-linearity. The capsule networks

use vectors instead of scalars. When compared to the convolution of a CNN, the basic operations

of capsule networks are matrix multiplication of input vectors, scalar weighting of input vectors,

sum of weighted input vectors and vector-to-vector non-linearity. Table 3.3 provides a detailed

comparison of the operations and pictorial representation of capsules and traditional neurons. The

nomenclature for the parameters used in this table has the usual meanings.

Capsules also have the advantage of being able to produce good accuracy with much less training

datasets. Intuitively, a capsule identifies the rotation of face right or left rather than recognizes a

rotated variant of a face. Thus, having vector information such as orientation, size, etc, capsules
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can use that information to learn a richer representation of the features. Since the model learns the

feature variant in a capsule, possible variants are extrapolated more effectively with less training

data.

Figure 3.4: Schematic diagram of a simple capsule network with 3 layers [7].

Figure 3.4 shows a simple capsule network with 3 layers. The model is a shallow network that

contains only two convolutional layers and one fully connected layer. Conv1 contains 256, 9 × 9

convolution kernels with a stride of 1 and ReLU activation. The features obtained from this layer

are used as inputs to the primary capsules.

The primary capsules are the lowest level of multi-dimensional entities [7]. Since the capsule

network is based on inverse graphics rendering like the human brain, the primary capsules invert

the rendering process. The second layer (PrimaryCaps), a convolutional capsule layer contains

32 channels of convolutional 8D capsules where each primary capsule consists of 8 convolutional

units with a 9 × 9 kernel and a stride of 2. Each primary capsule output visualizes the outputs of

all 256 Conv1 units. The PrimaryCaps contains a total of 32 × 6 × 6 capsule outputs with an 8D

vector.

The final Layer (DigitCaps) contains one 16D capsule per digit class and each of these capsules

takes input from all the capsules in the layer below. Routing occurs only between two consecutive
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capsule layers, PrimaryCaps and DigitCaps.

Figure 3.5: Schematic diagram of a decoder structure to reconstruct a digit from the DigitCaps
layer representation [7].

Additional reconstruction loss is used to encourage the digit capsules to encode the instantiation

parameters of the input digit. During training, everything except the activity vector of the correct

DigitCaps is masked out. This activity vector is used to reconstruct the input image. The output

of the DigitCaps is fed into a decoder. The decoder comprises 3 fully connected layers. Each

connected layer models the pixel intensities as described in Figure 3.5.

3.4 SegCaps

Capsule networks are proposed for small images and for classification. We need to adapt it to do

segmentation. The SegCaps [6] is the modified version of the capsule network for object segmen-

tation. It differs from the dynamic routing of the original capsule networks in the following ways.

First, routing is done within a defined spatially-local window. Second, each member of the grid

shares the transformation matrix within a capsule type. These modifications can handle large im-
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age sizes, unlike original capsule networks. Additionally, the concept of deconvolutional capsules

is introduced. A three-layer convolutional capsule is illustrated in Figure 3.6.

Figure 3.6: Schematic diagram of baseline SegCaps [6] used for retinal blood vessel segmentation
of FA videos.

Table 3.4: Number of parameters used in training the different neural network models.

Method Parameters
U-Net 31 M
Tiramisu 2.3 M
Baseline SegCaps 1.6 M

In our experiment with FA videos using U-Net, Tiramisu and baseline SegCaps, we find that base-

line SegCaps uses 94.84% less parameters than U-Net and 30.43% less parameters than Tiramisu.

Table 3.4 gives the total number of parameters required in training the models.
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CHAPTER 4: PROPOSED APPROACH

To the best of our knowledge, for the first time in the literature, we introduce a new computational

tool that combines deep learning and video magnification allowing quantitative analysis of FA

videos to assist doctors in analyzing the diagnostic interpretations of these videos. We propose a

pipeline-based approach, which has three modules, namely, image registration, segmentation using

baseline SegCaps [6] and video magnification using Eulerian video magnification [8].

In module 1, we perform image registration to remove the motion, which is one of the major

challenges. Next, in module 2, the segmentation of the vessels is done using some machine learning

approaches. Finally, in module 3, we use these segmented regions to magnify only the retinal blood

vessel structures for easier diagnostic interpretation of those videos.

4.1 Image Registration

While capturing FA videos, the images are not properly aligned due to motion in the frames caused

by the movement of the patient and blinking of the eyes and the presence of noise in the videos.

Therefore, proper image registration is required. Moreover, it is required to diminish the artifact

error of Eulerian video magnification, which is implemented in the final module of the proposed

solution.

In the image registration, we use serial rigid registration with binary images instead of grayscale

images. We also consider a middle frame from the video and register all the remaining frames to

it. During pre-processing, we crop FA videos to 512 × 512 size. For the removal of noise from

the images, we normalize, blur using the median filter, and threshold them using Otsu’s algorithm

[37].
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We also see that affine registration with one scale may be used, but the rigid registration is found

to be more effective. Here, for any pixel location, we find a new location, where the degrees

of freedom is three. Since we already know the old and new locations, we try to find the relevant

parameters for the image registration. We do not want vessel structures to be changed. Considering

two point sets, rigid registration generates a rigid transformation which maps one point set to the

other. A rigid transformation is a type of transformation that does not vary the distance between any

two points. In rigid registration, it includes only rotation and translation. In some cases, the point

set can also get mirrored. Gradient images are fed into rigid registration, because of the heavy

noise nature of the images. The rigid transformation is represented by the following Equations

(4.1) and (4.2).

X ′ =

x′
y′

 =

cos θ − sin θ

sin θ sin θ


x
y

+

tx
ty

 (4.1)

X ′ = T (X|P ) = T (x, y|tx, ty, θ) , (4.2)

where, x and y are the old pixel locations and x′ and y′ are the new pixel locations. tx and ty are

the translation parameters and θ is the rotational parameter. It has three degrees of freedom.

4.2 Image Segmentation

Retinal vessel segmentation helps doctors to visualize and diagnose accurately, and prescribe early

treatment and surgery of ocular diseases. This is the first-ever deep segmentation study in FA

videos. We use the capsule based deep network for vessel segmentation. We create masks for the

blood vessels in retinal images using AMIRA software (Thermo Fisher Scientific, Massachusetts,
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USA). This is the ground truth. Data augmentation is performed to increase the performance of

the baseline SegCaps [6] algorithm. We also compare the results with the state-of-the-art methods

like U-Net [10] and Tiramisu [12].

4.2.1 Data Augmentation

Since our dataset contains only 10 subjects, we use data augmentation to increase the performance

of the Baseline Caps algorithm. We create another ten pseudo-subjects by augmenting the original

ten subjects. As a result, the total number of subjects becomes twenty consisting of 2802 frames.

In order to obtain more variations in the dataset, we employ several operations including rotation

(5 to -5), flipping left and right, flipping top and bottom, random zoom with 80% zoom level and

elastic distortion.

4.2.2 Segmentation using baseline SegCaps

In this work, we conduct a comprehensive computational experimentation to compare the baseline

SegCaps [6] with some state-of-the-art baseline networks such as U-Net and Tiramisu, which were

not used before in this field.

4.3 Video magnification

The final module of the pipeline-based architecture is the video magnification. This is done in or-

der to visualize the change of intensity in the blood vessels. In the literature, it has been found that

Lagrangian perspective (with reference to fluid mechanics) based approach is used to amplify sub-

tle motions and visualize deformation of objects that would otherwise be undetectable. However,
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this perspective involves excessive computational times and it is difficult to make artifact-free, es-

pecially at obstruction regions and complex motions due to its accurate motion estimation. On the

other hand, Eulerian based approach does not rely on exact motion estimation, but it amplifies the

motion by changing temporal color at fixed positions [8]. In this study, we apply Eulerian video

magnification (EVM) to FA videos. The segmentation is used as a prior (constrained magnifica-

tion) to obtain the magnification of the segmented blood vessels.

Figure 4.1: Overview of the Eulerian video magnification framework [8].

Eulerian video magnification algorithm combines spatial and temporal processing to give an em-

phasis to minor changes in a video along the temporal axis. The process involves in the decom-

position of the frames into different spatial frequency bands. Then, the frames are converted from

the spatial to the frequency domain using Fourier transformation. Considering the time series of

a pixel intensity in a frequency domain, a bandpass filter is applied to obtain the frequency bands

of interest. The extracted bandpassed signal is amplified by a magnification factor α. This factor

is user-defined. Finally, the magnified signal is appended to the original and the spatial pyramid

is collapsed to generate the output. Figure 4.1 illustrates the overall architecture of the Eulerian

video magnification.
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Figure 4.2: Flowchart of modified Eulerian video magnification for FA video.

We use a modified version of Eulerian video magnification as illustrated in Figure 4.2. We modify

the algorithm to amplify only the region of interest. Here, in FA video, we consider the region as

the blood vessels instead of the whole frame. Accordingly, the segmented frames obtained from

the segmentation algorithm are taken as the inputs of the magnification algorithm. We use an

amplification factor of 5, a frequency range of 0.5-10 Hz and spatial decomposition levels of 4.

The output is a grayscale video, where only the blood vessels are magnified in the red color. It

shows the flow of blood in the vessels as the video progresses.
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CHAPTER 5: EXPERIMENTS AND RESULTS

We now provide the details of the computational experiments carried out in this work.

5.1 Dataset

A prospective study is conducted with existing IRB at Central Florida Retina, Orlando, FL, in

collaboration with University of Central Florida College of Medicine, Orlando, FL. The FA video

dataset consists of 10 normal subjects. The frames of each of the 10 subjects are given as: Subject

1 – 143 frames, Subject 2 – 108 frames, Subject 3 – 218 frames, Subject 4 – 119 frames, Subject

5 – 120 frames, Subject 6 – 116 frames, Subject 7 – 190 frames, Subject 8 – 112 frames, Subject

9 – 164 frames, and Subject 10 – 111 frames. Therefore, we have a total of 1402 frames.

5.2 Image registration

The image registration algorithm is coded in C++ language. The Insight Toolkit (ITK) library is

used for the rigid registration. The OpenCV library is adopted for the pre-processing the frames of

FA videos. In order to optimize the registration parameters, we apply a gradient descent algorithm

with a learning rate of 0.125 and step size of 0.001. We run the optimizer for 200 iterations.

The parameters of the gradient descent algorithm are obtained through the trial and error method.

We visually evaluate the results obtained after image registration. We consider cross-correlation

as similarity matrix instead of mutual information because it has been shown in the literature

that cross-correlation gives better interpretation than mutual information on images with the same

modality or source. It is found that image registration fails when a grayscale image is used as

reference image instead of a binary image. This is shown in Figure 5.1.
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Figure 5.1: Overlapping two successive frames shows registration (a) Fails with grayscale images

and (b) Successful with binary images.

5.3 Image segmentation using deep learning algorithms

Manual annotations of the FA video frames are done using AMIRA software. Since physicians

primarily look for the changes in the blood flow in the large vessels, only the large vessels are an-

notated. The networks: U-Net, Tiramisu and baseline SegCaps are coded in python using libraries

like Keras and Tensorflow. The experiments are run on a computer equipped with Ubuntu Linux

operating system with NVIDIA Tesla GP graphics card.
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5.3.1 Details of training procedure

All possible experimental parameters play an important role in the performance of different net-

works. The networks are trained from scratch on the FA images. Inside the network, the input

images go through another round of data augmentation methods comprising scale, flip, shift, ro-

tate, elastic deformations and random noise. Adam optimizer is used with an initial learning rate

of 0.0001. The learning rate decays by a factor of 0.000001 when the validation loss reaches a sat-

uration level. The batch size is taken as 1 for all the experiments. Weighted binary cross-entropy

loss is taken as the loss function. The training continues for 200 epochs (1000 steps per epoch) and

early stopping is applied with a patience value of 25 epochs.

To validate the datasets, we use a 10-fold cross-validation, where it divides the entire dataset into

ten equally sized subsets and uses 90% of the dataset for training and 10% for testing to evaluate

the accuracy of the cross-validation results. This process is repeated by exchanging the training

and testing subsets ten times or folds such that all data has a chance of being trained and tested.

Since the dataset used for validation in each fold is unknown to the learning algorithm, it is a good

benchmark for the trained model for evaluation on a testing dataset and thus avoids over-fitting.

5.3.2 Metric for algorithm performance

In order to verify the accuracy of the performance of the baseline SegCaps, we use the metric Dice

coefficient (DSC). The formula of Dice score is given in Equation (5.1)

DSC =
2TP

2TP + FP + FN
(5.1)

Higher the DSC, better the accuracy is.
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5.3.3 Quantitative analysis

While training the FA video frames with different networks, we use weighted binary cross-entropy

as the loss function. Figures 5.2, 5.3 and 5.4 illustrate the loss curve during training and validation

for three different models.

Figure 5.2: Loss curves for the U-Net model during training and validation.

Figure 5.3: Loss curves for the Tiramisu model during training and validation.
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Figure 5.4: Loss curves for the baseline SegCaps model during training and validation.

The comparative Dice score results of these experiments are shown in Table 5.1. It is evident from

the results that the baseline SegCaps network considerably outperforms the other two models.

Table 5.1: Comparison of DSC for different neural network models.

Method DSC
U-Net 66.83%
Tiramisu 64.99%
Baseline SegCaps 73.28%

5.3.4 Qualitative analysis

For qualitative evaluations, three different frames taken from the same subject are used to compare

three different models. These are depicted in Figures 5.5 — 5.7. The ground truth is colored in

red and the output segmentation in blue. From the figures, it is clear that the segmentation done

by the U-Net and Tiramisu are leaky and also over-segmented. The baseline SegCaps, on the other
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hand, performs better than the other two models. Although manual annotations are done for large

vessels only, it is found that baseline SegCaps also achieves segmentation of smaller blood vessels

as well.

Figure 5.5: Comparison of different test results on a normal FA video (here, Frame 47 from Subject

2).

Figure 5.6: Comparison of different test results on a normal FA video (here, Frame 71 from Subject

2).
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Figure 5.7: Comparison of different test results on a normal FA video (here, Frame 106 from

Subject 2).

5.4 Eulerian video magnification

We conduct some preliminary computational experiments to ascertain the best parameters of the

proposed EVM method and consider the parameters for the EVM approach: amplification factor

(α) of 5, a frequency range between 0.5–10 Hz, and spatial decomposition levels of 4.

Figure 5.8 shows the raw and magnified fluorescein angiogram frame. It is seen from the figure

that blood vessels are significantly amplified. In the output of the magnified frame, we see slow

blood flow in the vessels.
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Figure 5.8: (a) Raw FA frames (b) Magnified FA frames using EVM algorithm.
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CHAPTER 6: DISCUSSIONS AND CONCLUSIONS

In this research work, we have introduced a new computational tool that helps doctors to analyze

and diagnose fluorescein retinal angiogram video. Our proposed method consists of three phases

such as image registration, retinal blood vessel segmentation and segmentation guided video mag-

nification. We perform serial rigid registration with binary images instead of grayscale images.

For registration, all the frames are registered to the middle frame with the objective of eliminating

the motion between the frames and some of the noise.

To the best of our knowledge based on the literature, deep learning based segmentation is the first

ever application in FA video study. We apply a capsule-based deep learning approach for retinal

video segmentation. The experimental results show the accuracy of more than 70% for the retinal

vessel segmentation, which is competitive with the state-of-the-art procedures such as U-Net and

Tiramisu networks.

Finally, we use Eulerian video magnification to amplify the intensities of the blood vessels. The

output video provides better analysis of blood flow dynamics from fluorescein retinal angiogram

videos.

There are some limitations of the current research worthy to note. The image registration is essen-

tial for removal of noise and motion from the video. For better pre-processing, other algorithms

can be tried. Although we used rigid registration, better registration algorithm can be applied. For

finding the parameters of rigid registration, we used a gradient descent algorithm. To get more

optimized parameters, other optimization algorithms can be applied.

We have investigated the performance of the baseline SegCaps based on a small dataset although

the data used here proves useful to validate the superior performance of the algorithm. However,
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larger dataset, once these are available, could be used for more accurate FA video image segmen-

tation.

The parameters used in the magnification algorithm can be further optimized to get more precise

amplification. Since we empirically find the parameters, parameter search can be a promising area

for future research.
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